975 resultados para contaminated water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently polymeric adsorbents have been emerging as highly effective alternatives to activated carbons for pollutant removal from industrial effluents. Poly(methyl methacrylate) (PMMA), polymerized using the atom transfer radical polymerization (ATRP) technique has been investigated for its feasibility to remove phenol from aqueous solution. Adsorption equilibrium and kinetic investigations were undertaken to evaluate the effect of contact time, initial concentration (10-90 mg/L), and temperature (25-55 degrees C). Phenol uptake was found to increase with increase in initial concentration and agitation time. The adsorption kinetics were found to follow the pseudo-second-order kinetic model. The intra-particle diffusion analysis indicated that film diffusion may be the rate controlling step in the removal process. Experimental equilibrium data were fitted to five different isotherm models namely Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Redlich-Peterson by non-linear least square regression and their goodness-of-fit evaluated in terms of mean relative error (MRE) and standard error of estimate (SEE). The adsorption equilibrium data were best represented by Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as Delta G degrees and Delta H degrees indicated that the sorption process is exothermic and spontaneous in nature and that higher ambient temperature results in more favourable adsorption. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term use of arsenic contaminated groundwater to irrigate crops, especially paddy rice (Oryza sativa L.) has resulted in elevated soil arsenic levels in Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown on these soils. A greenhouse pot experiment was conducted to evaluate the impact of arsenic-contaminated irrigation water on the growth and uptake of arsenic into rice grain, husk, straw and root. There were altogether 10 treatments which were a combination of five arsenate irrigation water concentrations (0-8 mg As l-1) and two soil phosphate amendments. Use of arsenate containing irrigation water reduced plant height, decreased rice yield and affected development of root growth. Arsenic concentrations in all plant parts increased with increasing arsenate concentration in irrigation water. However, arsenic concentration in rice grain did not exceed the maximum permissible limit of 1.0 mg As kg-1. Arsenic accumulation in rice straw at very high levels indicates that feeding cattle with such contaminated straw could be a direct threat for their health and also, indirectly, to human health via presumably contaminated bovine meat and milk. Phosphate application neither showed any significant difference in plant growth and development, nor in As concentrations in plant parts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fresh produce is increasingly implicated in food-related illnesses. Escherichia coli can survive in soil and water and can be transferred onto plant surfaces through farm management practices such as irrigation. A trial was conducted to evaluate the impact of field conditions on E. coli persistence on iceberg lettuce irrigated with contaminated water, and the impact of plant injury on the persistence of E. coli. Lettuce heads were injured at 14, 7, 3, 2, 1, and 0 days before inoculation, with uninjured heads used as a control. All lettuce heads (including controls) were overhead irrigated with a mixture of nonpathogenic E. coli strains (10^sup 7^ CFU/ml). E. coli counts were measured on the day of inoculation and 5 days after, and E. coli was detected on all lettuce head samples. Injury immediately prior to inoculation and harvest significantly (P = 0.00067) increased persistence of E. coli on lettuce plants. Harsh environmental conditions (warm temperatures, limited rainfall) over 5 days resulted in a 2.2-log reduction in E. coli counts on uninjured lettuce plants, and lettuce plants injured more than 2 days prior to inoculation had similar results. Plants with more recent injuries (up to 2 days prior to inoculation) had significantly (P = 7.6 × 10^sup -6^) greater E. coli persistence. Therefore, growers should postpone contaminated water irrigation of lettuce crops with suspected injuries for a minimum of 2 days, or if unavoidable, use the highest microbiological quality of water available, to minimize food safety risks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Titanate nanofibers with two formulas, Na2Ti3O7 and Na1.5H0.5Ti3O7, respectively, exhibit ideal properties for removal of radioactive and heavy metal ions in wastewater, such as Sr2+ , Ba2+ (as substitute of 226Ra2+), and Pb2+ ions. These nanofibers can be fabricated readily by a reaction between titania and caustic soda and have structures in which TiO6 octahedra join each other to form layers with negative charges; the sodium cations exist within the interlayer regions and are exchangeable. They can selectively adsorb the bivalent radioactive ions and heavy metal ions from water through ion exchange process. More importantly, such sorption finally induces considerable deformation of the layer structure, resulting in permanent entrapment of the toxic bivalent cations in the fibers so that the toxic ions can be safely deposited. This study highlights that nanoparticles of inorganic ion exchangers with layered structure are potential materials for efficient removal of the toxic ions from contaminated water.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland’s CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are: (1) water used for municipal purposes, (2) recreational water activities in rivers, (3) occupational exposures, (4) water extracted from contaminated aquifers, and; (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Leptospirosis outbreaks have been associated with many common water events including water consumption, water sports, environmental disasters and occupational exposure. The ability of leptospires to survive in moist environments makes them a high risk agent for infection following contact with any contaminated water source. Water treatment processes reduce the likelihood of leptospirosis or other microbial agents causing infection provided they do not malfunction and the distribution networks are maintained. Notably, there are many differences in water treatment systems around the world, particularly between developing and developed countries. Detection of leptospirosis in water samples is uncommonly performed by molecular methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary purpose of this paper is to overview a selection of advanced water treatment technology systems that are suited for application in towns and settlements in remote and very remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. This recognises that sanitation and water treatment are inextricably linked and both are needed to reduce risks to environment and population health from contaminated water sources. For both Australia and Sri Lanka only a small fraction of the settlements in rural and remote regions are connected to water treatment facilities and town water supplies. In Australia’s remote/very remote regions raw water is drawn from underground sources and rainwater capture. Most settlements in rural Sri Lanka rely on rivers, reservoirs, wells, springs or carted water. Furthermore, Sri Lanka has more than 25,000 hand pumped tube wells which saved the communities during recent droughts. Decentralised water supply systems offer the opportunity to provide safe drinking water to these remote/very remote and rural regions where centralised systems are not feasible due to socio-cultural, economic, political, technological reasons. These systems reduce health risks from contaminated water supplies. In remote areas centralized systems fail due to low population density and less affordability. Globally, a new generation of advanced water treatment technologies are positioned to make a major impact on the provision of safe potable water in remote/very remote regions in Australia and rural regions in Sri Lanka. Some of these systems were developed for higher income countries. However, with careful selection and further research they can be tailored to match local socio-economic conditions and technical capacity. As such, they can equally be used to provide decentralised water supply in communities in developed and developing countries such as Australia and Sri Lanka.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solar distillation can be used to produce potable water from contaminated water. However, studies show that ions such as F(-) and NO(3)(-) occur in distillates from solar stills. In order to understand the reasons for this behavior, imaging and distillation experiments were conducted. White dots were seen in the vapor space above the interface of hot water poured into containers. The concentrations of various ions such as F(-) and SO(4)(2-) in the distillates from thermal and solar distillation experiments were roughly comparable when the feed consisted of deionized water and also solutions having fluoride concentrations of 100 and 10 000 mg/L. These observations suggest that aerosols enter the distillation setup through leaks and provide nuclei for the condensation of water vapor. The water-soluble component of aerosols dissolves in the drops formed, and some of the drops are transferred to the distillate by buoyancy-driven convection.